
Personalization Engine Setup

Configuring Personalization Engine and adding Sailthru’s Personalize JavaScript on your site will
enable you to import your site’s content into Sailthru and track your users’ behavior and interests. With
this data, Sailthru will enable you provide optimal personalized content to your users.

The simplest approach to get up and running requires just two steps:

1. Embed a single line of Sailthru’s Personalize JavaScript on your pages.
<script src="//ak.sail-horizon.com/onsite/personalize.v0.0.4.min.js"
type="text/javascript"></script>

2. In your Settings, enter your site domain(s) and tell Sailthru which kinds of URLs contain content that
should or should not be pulled into your Content Library.

However, there are many additional features to consider that require additional configuration steps. For
example:

Set custom metadata on your content items
Make direct updates to the Content Library via API
Manually track user actions or user interests via JavaScript

Review the configuration steps below and speak with your Customer Success Manager to determine which
methods will work best for you.

The configuration steps covered on this page:

1. Customize and Embed the Personalize JavaScript
2. Implement Meta Tags and/or the Content API
3. Set Content Spidering Preferences
4. Understand and Use Sailthru Cookies

Customize and Embed the Personalize JavaScript

Sailthru offers two modes for the Personalize JavaScript that you must include on your site.

Most clients can use the default Single-Line Mode by simply including the following script:
<script src="//ak.sail-horizon.com/onsite/personalize.v0.0.4.min.js"
type="text/javascript"></script>

However, if you need to use any additional JavaScript functions described in this document, you can
enable Instrumented Mode by using the following code and including those functions after it.
<script src="//ak.sail-horizon.com/onsite/personalize.v0.0.4.min.js" type="text/javascript"
data-sailthru-setup="true"></script>

Use the following feature-comparison table to decide.

Note that this is a per-page setting, so you can opt to enable both modes on different types of pages on your
site. If you already have a legacy Sailthru JavaScript code embedded on your site, you can replace it with the
latest version of the Personalize JS.

1

https://my.sailthru.com/settings/domains
https://my.sailthru.com/settings/spider
https://getstarted.sailthru.com/site/personalization-engine/pe-setup/#js
https://getstarted.sailthru.com/site/personalization-engine/pe-setup/#meta
https://getstarted.sailthru.com/site/personalization-engine/pe-setup/#spidering
https://getstarted.sailthru.com/site/personalization-engine/pe-setup/#cookies

Sailthru Personalize JS Mode Features

Single-Line Mode (Default) Instrumented Mode

Auto-tracking of pageviews. Manual tracking option available
for pageviews. (Ideal for single-
page views, such as infinite
scroll, and dynamic single-page
sites.) Auto-tracking is the
default.

Tags to be recorded as user
interests when an item is
viewed are those spidered by
Sailthru or sent via the Content
API and stored for each item in
your Content Library.

Tags for viewed items to be
recorded as user interests can be
manually specified in the JS
code, regardless of whether
others are stored for the content
item in the Content Library.

URL of current page is
identified automatically, with
query strings included or
excluded based on sitewide
Spider Preferences.

URL of current page can
optionally be explicitly specified
in the JS.

Whether to spider page is
determined by sitewide Spider
Preferences.

Whether to spider page can be
determined in the JS.

Single-Line Mode uses the default behavior/values for all functions below, and does not require them to be
called.

If you are using single-line mode, you can skip the rest of this section and go directly to section 2, Implement
Meta Tags and/or the Content API.

Under Instrumented Mode, the setup function below is required and an additional trackPageview function is
optional.

Functions for Instrumented Mode with Advanced Options
setup

Sailthru.SPM.setup(customerId, {optionalConfigObject});

This function requires your Sailthru Customer ID which can be found in the My Sailthru interface on the API
and Postbacks page under Settings > Setup.

https://getstarted.sailthru.com/site/personalization-engine/pe-setup/#meta
https://my.sailthru.com/settings/api_postbacks

Required
Parameter

Type Default Description

customerId String N/A Customer ID, for example
b682bb3746796686c27164ba015c3da7.

Replace customerId with the one
displayed for your account in My
Sailthru on the Settings page API &
Postbacks.

Click to view keys for optionalConfigObject (a JSON object containing key-value pairs): autoTrackPageView,
useStoredTags, url, tags, and spider

Optional Key Type Default Description

autoTrackPageView Bool true Specify whether
pageviews should be
tracked automatically
on page-load. You
can track pageviews
manually using the
trackPageView
function, which is
useful when a single
URL may display an
array of content
items.

useStoredTags Bool true Specify which
interest tags to assign
to the user based on
the item; if true, use
existing tags in your
Content Library
(whether added by
the Personalize JS
spider or Content API
calls); if false, use
tags sent in the

https://my.sailthru.com/settings/api_postbacks

trackPageView
function.

url Bool [URL
of the
current
page as
visited]

If your page has
multiple valid URLs,
specify the one
primary URL (a.k.a.
the canonical URL)
that Sailthru should
use when spidering
content. For pages
with multiple URLs,
this is required in
order to prevent your
content library from
acquiring duplicate
content under
multiple URLs.

tags String of
comma-
separated
values or
an array
of strings

true By default, for the
user who views the
page, Sailthru will
attribute the stored
interest tags for the
current item that exist
in your Content
Library. If you wish
to pass other dynamic
interest tags
dynamically upon a
page view, use the
tags parameter to
send those tags.

Note: If you are
manually tracking
page views (i.e. you
have set
autoTrackPageView
to false), you should
instead pass tags via

the trackPageView
function.

spider Bool true Determines whether
Sailthru should spider
the page on which the
Javascript appears.
Set this to false to
prevent spidering.
(Note that when set
to false, the page will
not be spidered or
count pageviews.)

Include any keys as key-value pairs using object-literal syntax. For example:

Sailthru.SPM.setup(123456789, {
 autoTrackPageviews: false,
 useStoredTags: false
});

trackPageview

Optional. Used to manually register pageviews. This is Ideal for single-page views, such as infinite scroll, and
other dynamic single-page sites.

You can log a pageview using the spm.trackPageView function at any time. This is typically used when
autoTrackPageView is set to false. Note that if you leave autoTrackPageView set to true and use
spm.trackPageView, multiple pageviews will be logged.

spm.trackPageView(url, {
tags: tagsVar,
onSuccess : function() {console.log('trackPageView success note');},
onError : function() {console.log('trackPageView failure note');}}
});

Parameters for trackPageView:

Required: Replace url with a variable representing the URL for which you want to track a pageview.
Required: JSON object parameter containing key-value pairs. (May be empty if no optional keys are
included.)

Optional: If you wish to attribute a custom array of interest tags to the user who views this page,
rather than those which may be stored for the associated URL in the Content Library,
replace tagsVar with your tags: either a string of comma-separated tags or an array of strings, one
for each tag.
Optional: Include onSuccess or onError callbacks.

According to the instructions above, you can customize and include the following sample JavaScript
code for Instrumented Mode.

<script language="javascript" type="text/javascript" src="//ak.sail-horizon.com/onsite/personal
ize.v0.0.4.min.js" data-sailthru-setup="true"></script>

<script type="text/javascript">

var customerId = 'your customerId';
 // via http://my.sailthru.com/settings/api_postbacks

Sailthru.SPM.setup(customerId, {
 autoTrackPageviews: false,
 useStoredTags: false
});

Sailthru.SPM.trackPageView(url, {
 tags: "tag1,tag2,tag3",
 onSuccess : function() {},
 onError : function() {}
});

</script>

Implement Meta Tags and/or the Content API

Personalization Engine crawls pages that are found by our Spider or submitted using the Content API. Similar
to search bots, the Spider records meta tags to determine the key attributes of each item-specific page,
including interest tags, though you can also submit content metadata using the Content API.

Personalization Engine also measures content popularity by pageviews, which can further weight content in
Personalization Engine-powered products. For a full list of algorithms that you can use to determine which
items are displayed to users, see the Zephyr function personalize().

You can add Sailthru-specific meta tags to the content pages of your site. The text in “sailthru.tags” should
correspond broadly to the interests of users. For example:

<meta name="sailthru.date" content="Tue, 05 Apr 2012 23:26:57 -0400" />
<meta name="sailthru.title" content="Belichick named top coach in the NFL" />
<meta name="sailthru.tags" content="sports, football, nfl, new-england-patriots" />

If you already have a meta “date” tag or suitable tags as meta “keywords”, you do not need to provide
those as custom Sailthru tags. However, we recommend that interest tags are Sailthru-specific (i.e. that
“sailthru.tags” is used) for optimum performance.
Additional supported Sailthru meta tags exist, beyond these examples. For details and best practices,
see Personalization Engine Meta Tags.
To start using Sailthru without suitable meta keywords or sailthru.tags, consider Sailthru’s Auto-
Tagging feature.

2

https://getstarted.sailthru.com/new-for-developers-overview/zephyr-functions-library/personalize/
https://getstarted.sailthru.com/horizon-overview/horizon-meta-tags/
https://getstarted.sailthru.com/site/horizon-overview/horizon-meta-tags/
https://getstarted.sailthru.com/site/horizon-overview/horizon-auto-tagging/

For more information on using the Content API to submit page metadata or request spidering of pages, see
the Content API page.

Set Content Spidering Preferences

You can leverage Sailthru’s spider to automatically add your content pages and their metadata to your Sailthru
Content Library.

Clients with advanced content needs can alternatively add content/attributes exclusively using Sailthru’s
Content API, or use a hybrid approach with both features: for example, spider content, then use the API to add
additional metadata, update content, delete outdated content, or request a respider.

If you intend to spider any content:

Specify which URLs and URL structures to allow Sailthru to crawl in Spider Preferences. For example,
you can choose to “include” your entire domain, but “exclude” category and landing pages.

Note: An alternative way to exclude pages is through the JavaScript on each page using the
“spider” parameter (requires Instrumented Mode and personalize JS v0.0.3+ described on this
page). To exclusively use the JS on each page to determine whether the page is spidered, leave
“Include Rules” blank. If you simply want to exclude pages using JS, you can add “Include Rules”
and use the JS to exclude pages from that set of matching URLs.

To learn more about setting up these rules, see Personalization Engine Setup: Include/Exclude Pages.
Note that query strings appended to URLs (for example, example.com/?queryparameter=queryvalue) are
ignored by the spider. If you would like certain query parameters and values to be included as part of the
stored URL in the Content Library, add those parameter names on the Spider Preferences page. Enter
them in the “Spiderable Query Params” section, one per line.
The first time a spiderable page is loaded, its metadata is added to the Content Library.
If your site is login-only

Click for instructions on how to let the spider in automatically
The Spider passes an HTTP User-Agent header that is unique to your account. Follow the steps
below to obtain your unique Spider User-Agent name, and then allow the agent access to your
site.

1. Login to my.sailthru, and go to your Settings page.
2. Click the lock icon under the heading API Key and Secrets at the top left of the page.
3. Copy the text from the Spider User-Agent section. For example: “Sailthru Content Spider

[Account Name/abcefgh12345]”
4. On your login website, you will typically check if a user is logged in and if not, redirect them

to the login page. To this existing code, you just need to add a check of the SERVER/USER
AGENT. This check uses the Content Spider key. The website recognizes the key, and
allows the Horizon spider to login to gather user interests/clicks.

For example (in PHP):

<?php
 . . .
 //ensure user is logged in
 if (!isset($_SESSION['user']) && $_SERVER["HTTP_USER_AGENT"]=="Sailthru
Content Spider [Sailthru Client Name/12334567832481348asfasdf]") {
 redirect("login_page");

3

https://getstarted.sailthru.com/new-for-developers-overview/horizon/content/
https://my.sailthru.com/settings/spider
https://getstarted.sailthru.com/onsite-new/horizon-overview/horizon-exclude/
https://my.sailthru.com/settings_api

 }
 . . . web page desired to be spidered . . .

If you are having difficulty editing your site to allow our spider access or are unsure of the best
way to go about doing this, please contact Sailthru’s Support Team.

If you intend to manage content exclusively using the Content API, with no spidering:

Do not enter any “Include Rules” on the Spider Preferences page.

Note: If the web server your site is hosted on is forcing GZIP compression, the pages cannot be spidered. In
this case, please use the Content API instead.

Understand and Use Sailthru Cookies

As users interact with your site and email, browser cookies are dropped to track their activity and identify
known users.

The following cookies are dropped automatically by the Personalize JavaScript, as needed. The only
configuration steps you may require would pertain to the described API integrations.

sailthru_content – Tracks recent pageviews for all visitors, and can be used to populate a new user
profile.
Note: It is highly recommended that you configure your site to submit this cookie value through the User
API on each user signup. See Anonymous User Conversion.
sailthru_hid – Uniquely identifies known users in order to track their onsite activity. It is dropped under

the following scenarios:
Signup – When a new user signs up on your site.
Site Login – When an existing user logs in, if the cookie was not already present.
Email Click – When an uncookied user clicks through an email from Sailthru and visits your site.
Purchase – When a user makes a purchase on your site and the email address does not yet belong
to a known user. (Commerce sites only. Requires Purchase API integration.)

sailthru_bid – Set when a subscriber opens and clicks an email link, to attribute onsite actions to a
particular email campaign. (Note that this requires that you have set up a CNAME for link rewriting and
have added this to the Link Domain setting in your account.) Commerce clients should pass this cookie
as message_id when making any purchase API call.
sailthru_pc – Tracks SPM clicks. This only applies if you have implemented Sailthru’s Site

Personalization Manager.

4

https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=support@sailthru.com
https://getstarted.sailthru.com/new-for-developers-overview/email-and-user-profiles/user/
https://getstarted.sailthru.com/site/anonymous-user-conversion/anonymous-data-conversion-overview/
https://getstarted.sailthru.com/new-for-developers-overview/advanced-features/purchase/

